MATEK
Vajk Fekete
halaloszto at yahoo.co.uk
Thu Nov 4 15:15:07 CET 2004
Nya'ri Viktor wrote:
>
>> 1,3,5,7,9,11,13,15 stb adott alapbol
>> az 1-re belathato hogy nincs nagyon masik megoldas (kiveve 0,-1
>> negyzetet)
>> 3-ra szinten nincs
>> de ha elkezded a nem csak szomszedos megoldasokat figyelni akkor
>> egyre tobb lehetoseg lesz a szamok novekedesevel
>> 16-1=15 itt mar tuti ket megoldas van - valamilyen parabola szerint
>> nonek a lehetosegek szamai ahol a kulonbseg az x-en a lehetosegek a
>> y-on latszanak
>> szerintem levezetheto , de ha ekkora szamokrol van szo akkor
>> valoszinuleg statisztikus kozelites is megtenne .
>
>
> Rosszul látod; nem arányos sajnos; mert pl.
>
> ha x=11
> akkor b=6 a=5 (36-25=11)
> Itt csak ez az egy megoldás van.
>
> ha x=15
> akkor lehet b=8 a=7 (64-49=15)
> de lehet b=4 a=1 (16-1=15)
> Itt már két megoldás is van.
>
> ha x=45
> akkor lehet b=23 a=22 (529-484=45)
> vagy lehet b=9 a=6 (81-36=45)
> de lehet b=7 a=2 (49-4=45)
> Itt már három megoldás is van.
>
> ha x=55
> akkor lehet b=28 a=27 (784-729=55)
> de lehet b=8 a=3 (64-9=55)
> Itt már megint csak két megoldás van.
>
> So"t:
> ha x=59
> akkor b=30 a=29 (900-841=59)
> Itt meg már csak ez az egy megoldás van.
>
> Tehát a két négyzetszám közti különbség (x) folyamatosan no", a
> leheto"ségek száma meg nem no", hanem összevissza változik; ezzel sem
> jutottunk elo"rébb sajnos. De jöhetnek az újabb ötletek!
Erre irtam, hogy annyifele megoldas van, ahanyfelekeppen felirhato az
adott szam ket egesz szam szorzatakent.
Sajnos nem igazan aranyos, mert ha a szam primszam, akkor ugye egy
megoldas van, ha ket primszam szorzata akkor ketto, es igy tovabb. ha a
felbontas printenyezoi p0...pn, ezek kitevoi k0....kn, akkor
(k0+1)(k1+1)...(kn+1)/2 felekeppen irhato fel ket szam szorzatakent.
az eredeti felvetesbol nem volt volt vilagos, de akkor most
_neked_az_osszes_megoldas_ kell????
vajk
More information about the Elektro
mailing list